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An implicit numerical algorithm for the solution of transient, two-dimensional 
magnetohydrodynamic flows is presented. The algorithm is formulated for an arbitrary 
Lagrangian-Eulerian computation mesh. This allows the use of variable resolution 
meshes and reduces computational diffusion of the magnetic field so that flows with a 
magnetic Reynolds number of the order of hundreds may be calculated. In addition, 
the implicit formulation makes possible the efficient calculation of low speed flows. 
Sample calculations illustrating the properties of the algorithm are presented. 

There are two serious difficulties in the numerical calculation of magnetohydro- 
dynamic flow in even the simplest cases [I]. First, if the Alfven speed is very large 
compared with the maximum fluid velocity, stability conditions severely limit the 
maximum time step in an explicit calculation. Boris [2] has suggested a solution to 
this problem that makes the speed of light an adjustable parameter in a relativistic 
formulation of the equations of magnetohydrodynamics. In the first approxima- 
tion, the mass-density is replaced with a generalized mass-density tensor that 
includes a term proportional to the Maxwell stress tensor, and inversely propor- 
tional to the square of the speed of light. With this replacement, the maximum 
Alfven speed is equal to c, the speed of light. Since c is an adjustable parameter, its 
value can be chosen so that a reasonable computation time step can be used. This is 
a valid approach so long as the results are independent of the value chosen for c. 

Second, computational diffusion often prevents the accurate resolution of fluid- 
fluid or fluid-field interfaces. Some diffusion is necessary to cancel destabilizing 
truncation errors in the difference approximations to the convection terms. It is 
usually added through artificial viscosity or through diffusionlike truncation errors 
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introduced by donor cell differencing of the convection terms. Since the des- 
tabilizing error is proportional to the velocity gradients [3], it is worse the greater 
the zone to zone variation of velocity. Artificial viscosity bounds this variation to 
an acceptable level for a given spatial resolution. However, the need for it is reduced 
only as spatial resolution is increased, or as higher order corrections to the dif- 
ference equation are added. Boris has proposed an approach which bounds zone- 
to-zone variation of the data by a flux correction method [4]. This may prove to be 
an acceptable and generally applicable method, but it requires the imposition of an 
additional constraint on the numerical solutions which may not always be appro- 
priate. On the other hand, a Lagrangian formulation reduces the need for artificial 
viscosity by removing the necessity for ditferencing convection terms. If the for- 
mulation is implicit, the Alfvtn problem is also solved. 

An implicit formulation of the dynamical equations is unconditionally stable. 
Furthermore, when the equations include all of the relevant physics, their iterative 
solution to a prescribed accuracy ensures that the calculation will resolve all 
important fluid motions. This point will be discussed in greater detail in the section 
on the computational method. 

A Lagrangian calculation reduces the need for artificial viscosity by eliminating 
the convection terms. In addition, Lagrangian zoning can provide resolution where 
it is needed, follow material interfaces, and allow the tailoring of zoning to the 
problem to be solved. However, the solution of implicit equations is sometimes so 
cumbersome and Lagrangian zoning so prone to instability in flow fields with shear 
that an implicit Lagrangian formulation is simply incapable of solving any prac- 
tical problem. The ICED-ALE technique (Implicit Continuous-Fluid Eulerian- 
Arbitrary Lagrangian-Eulerian) recently reported by Hirt and Amsden [6, 71 
extends an earlier implicit Eulerian technique [5] for the numerical solution of 
fluid flow problems. It provides an economical algorithm for the solution of 
implicit Lagrangian equations and a provision for automatic rezoning which 
permits the use of almost-Lagrangian zoning. We will discuss the extension and 
application of the ICED-ALE technique to magneto-flow problems. 

In Section I, we discuss the formulation of composite solution of the equations 
of magnetohydrodynamics in a coordinate system which may be translating and 
distorting. In Section II we give the algorithm by which the equations of Section I 
are to be solved, and discuss the changes in the convergence and stability proporties 
of the modified ICED-ALE equations. In Section III, we give comparisons among 
Eulerian, Lagrangian, and almost Lagrangian numerical calculations of the same 
problem, and give the results of the application of this technique to the solution of 
a z-pinch problem. 



NUMERICAL MAGNETOHYDRODYNAMICS 457 

I. THE MHD EQUATIONS 

The following equations are a mathematical model for a charge-neutral, but 
fully ionized, fluid with isotropic resistivity and pressure which are functions of 
the thermodynamic variables. The evolution of this model in time obeys four 
conservation laws. It obeys the three ordinary ones for a fluid, those for mass, 
momentum, and energy, plus an additional conservation law for magnetic flux 
given by Faraday’s law, 

ablat = V x {(u x b) - qj}, (1) 

where b is the magnetic field intensity, u the fluid velocity, 7 the resistivity, and j 
the current density. This equation states that the magnetic flux, defined by the 
integral, 

is constant on any open surface S whose boundary is moving with the fluid velocity 
and on which the resistivity is zero. That is, the divergence of the field is time 
independent. Since it is always zero initially, it will remain zero. 

Most numerical solutions of the MHD equations in two dimensions have been 
obtained with a fixed Eulerian computation mesh [ 1,8]. We have found it useful to 
solve the dynamical equations on a Lagrangian mesh, and rezone as necessary in a 
separate step. The equations solved in the Lagrangian step are (in mks units), 

and 

(dpldt) + p(V - u> = 0, 

Wdt = -(l/p) V * (II + M) + g, 

dbldt = 0, - V) u - b(V + u) - V x Tj, 

(2) 

(3) 

(4) 

di/dt = -(l/p)((II + M) * V) . u, (5) 

where g is the gravitational acceleration, i the sum of the specific internal and 
magnetic field energy, U the fluid stress tensor, and M the Maxwell stress tensor. 
The current density j is given by Ampere’s law, 

j = WlL)(V x b), (6) 

where p is the permeability. The Cartesian components of the fluid stress tensor, II, 
are given by, 

17ij = -((p/3) + w4xm)) hj + p’((WW + (au,iax,h (7) 
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wherep is given by the equation of state, h and ,s’ are the coefficients of bulk and 
shear viscosity, and aij is the Kronecker delta symbol. The components of the 
Maxwell stress tensor are given by, 

Mij = (l/#$?j - (l/2) b$&). 

The equation for the magnetic field energy given by 

(8) 

(d/dt)(b * b) = -2&M . V) + u - 2Tj . j, 

is combined with the equation for the internal energy, 

to form Eq. (5). 

p(d/dt)(i) = --(II * V) . u + qj * j, 

In the rezone step, the intensive time derivative of each quantity is calculated at 
the moving grid point. Where the relative velocity of the fluid and grid is given by, 

U rel =U-%, (9 

and II, is the assigned grid velocity, the intensive time derivative is given by, 

Wat = @tW - Cure1 * V> 9, (10) 

where I/ is some representative variable. If u, is equal to u, the intensive time 
derivative and the Lagrangian derivative are equal and the end result of steps one 
and two is a Lagrangian calculation. If u, is equal to 0, the intensive derivative is 
equal to the Eulerian derivative and the end result of steps one and two is an 
Eulerian calculation. However, u, is arbitrary and the calculation need not be 
either pure Eulerian or pure Lagrangian. 

To satisfy the conservation relations, the intensive derivatives for mass, momen- 
tum and total energy are written in integral form, 

a 
at, .I P dV = - 5,,,, {(n * Urel) p} cki, (11) 

$l/udV= I/$ dV - h,, {(n * Urel) PU> 4 (12) 

and 
a 

I 
d 

at, 
e dV = x 

I 
y a dV - s(v) ((n . urel) d> & 

s (13) 

where V is a subvolume of the computation region, and s(V) is its bounding surface 
with outward directed normal vector n. The total specific energy, C, is defined by 

e = (1/2)(u . u + b . b/pp) + i. 
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The intensive derivative for the magnetic field is similarly given by 

When the magnetic field energy is much larger than the internal energy, greater 
accuracy in the internal energy can be achieved by direct calculation of the internal 
energy. It has also been found [6] that when the flow is far-subsonic and the internal 
energy is high, an implicit solution of the internal energy equation is preferable. 

II. THE NUMERICAL SOLUTION OF THE MHD EQUATIONS 

Hirt and Amsden’s [6,7] composite algorithm, ICED-ALE, for fluid-flows is 
extended to magneto fluid-flows by adding an implicit Lagrangian difference 
equation for Faraday’s law, a rezone equation for the magnetic field, and an 
explicit calculation of resistive diffusion. In addition, a method for mesh relaxation 
is applied which allows a computation to proceed with nearly Lagrangian zoning, 
but without Lagrangian instabilities, 

A complete set of difference equations is given for a computation mesh composed 
of arbitrary quadrilateral zones in which the thermodynamic variables, density, 
internal energy, magnetic field and viscous stress terms are defined at cell centers; 
and the dynamic variables, position and velocity, are defined at cell vertices. The 
boundary of the computation mesh is assumed to be a rigid, frictionless, and 
infinitely conducting wall. 

A. The Lugrangian Phase 

The greater efficiency of the ICED-ALE technique, relative to an explicit 
difference formulation, comes from making certain terms in the dynamical equa- 
tions implicit. This allows the use of a larger time step than the stability condition 
for an explicit formulation would allow. 

In the ICED-ALE hydrodynamic calculation, the mass equation is solved by 
successive overrelaxation with pressure as the iteration variable. Changes in the 
pressure in one cell are coupled to changes in adjacent cells through the equations 
of motion. Economy in the iteration is achieved by computing only those changes 
that occur in an adiabatic process implicitly. The viscous stresses, those 
proportional to CL’ and X in Eq. 7, are treated explicitly in a separate calculation. 
The internal energy is not included in the iteration. A simple proportionality 
between changes in pressure and changes in density given by the adiabatic sound 
speed gives the necessary equation of state. Additional economy comes from 
updating the equations of motion only in those cells in which the calculated changes 
in pressure exceed the convergence criterion. Furthermore, for small resistivity, 
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explicit difference equations for the resistive diffusion of the magnetic field are 
satisfactory. 

The explicit difference equations for the resistive diffusion terms are solved 
before commencing the iteration. Their solution requires three steps. First, 
Ampere’s law is solved to obtain the current density at each vertex; second, the 
field diffusion caused by current circulation is calculated; third, the Ohmic heating 
is calculated and added to the internal energy. 

Ampere’s law is solved for the current at each vertex by path integration around 
a subdivision of the computation mesh called a momentum control volume. The 
sides of a momentum control volume are bounded by the four vertices adjacent to 
the one at which the current is being calculated. Where x’s denote cell centers, and 
circles cell vertices, a subregion of the computation mesh is labeled as shown in 
Fig. I. The solid lines connecting vertices are cell boundaries. Theidashed lines are 

FIG. 1. The dashed line surrounds the momentum control volume corresponding to vertex 1. 

the boundaries of the momentum control volume surrounding vertex 1. The mesh 
is cylindrically symmetric, with the axis of symmetry lying to the left of the sub- 
region shown. The coordinates of vertex 1 are r and z. The magnetic field lies in the 
r-z plane, and its components, b, and b, , are stored at cell centers labeled a through 
d. The current flow is in a direction perpendicular to the r-z plane, and is given 
by 

-ph4l = P,(r, - 4 + b,(z, - 4 + b,,(r2 - r4) + b&a - z.4 

+ br,(r4 - rs) + b& - 4 + br,(r6 - rJ + b,(z6 - ~31, (15) 

where A, is the area of the momentum control volume, 

4 = W)Krs - r&4 - 4 - (ZS - z&i - rd. (16) 
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The magnetic field diffusion caused by current flow is calculated by approxi- 
mating the volume integral for the current circulation within a subvolume of the 
computation mesh, 

$ js b dV = Js (n x qj) dS. 

The indicated surface integral is performed over the surface of a computation cell. 
The value of the current density on a side is equal to the average of the current 
densities at the vertices bounding that side. The contribution of the current flow at 
vertex 1 to the magnetic field diffusion in cell a is a typical example of the equations 
we obtained. It is given by, 

and 
(17) 

--6b,, = T.hKr2 + rl)(z2 - -4 + (rl + rJ(zl - 41 W4va 9 

where V, , the volume of cell a is given by, 

(18) 

va = U/W1 + r2 + r8 + r7Mr7 - r2)(z8 - -4 - (z7 - z2)(r8 - rdl (19) 
and 6t is the time step. At the boundaries of the computation mesh, the current is 
defined by a path integration over a path which lies completely inside the plasma. 
The assumption that magnetic field gradients are zero between boundary cell 
centers and boundaries determines the current density at the boundary. 

Finally, the contribution of the Ohmic heating to the internal energy is calculated. 
It can be shown that if the heating rate in each cell is proportional to the average 
of the square of the current densities at the four neighboring vertices, energy is 
conserved to U(8t2). Thus, the contribution of the current at vertex 1 to the Ohmic 
heating in cell a is given by the equation, 

% = (l/4) Th2 Wfa 7 (20) 

where pa is the mass density in cell a. 
Following the calculation of the resistive diffusion, the equations of motion are 

solved in explicit form. The resulting velocity field provides initial values for the 
iterative solution of the implicit equations. The explicit difference equations for 
vertex 1 are given by 

and 

4 = ul + Wl(z2 - d(2p + B,2 + Bz2) 

+ (r2 + r&h. - r&B,&) - (3 - 4 BTa>l/4m , (21) 

Cl = u1 - 8t[(r2 + r4){(r2 - rJ(2p + Br2 - Bz2) 

+ (~2 - ~~>@,BzNl/~m, , (22) 
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where u and v are the r and z components of u, B, and B, are equal to bT/p112 and 
b&.P, m1 is half the mass enclosed by the momentum control volume, and the 
tilde signifies that the left hand side is an estimate of the velocity at time t + St. 
The equations for vertices 2,3, and 4 are obtained by cyclic permutation of the 
indices in Eqs. 21 and 22. With the solution of the equations of motion, the iteration 
for the solution of the implicit equations can begin. 

For each component of the magnetic field, a quantity S is defined whose value is 
proportional to the error still remaining in the solution of the implicit equations. 
The quantity S, for the r-component is defined by, 

S, = (LB, - B,)/& - LBT DUDR - LB, DUDZ + LBp D, (23) 

and S, for the z-component is defined by, 

S, E (LB, - BJ6t - LB, DVDZ - LB, DVDR -I- LB, D, (24) 

where D is the difference approximation to the divergence of the velocity field, and 
DUDR, etc. are approximations to the derivatives i3u/ar, etc. The superscript L 
denotes the solution of the Lagrangian step for time t + St. 

The iterative solution of these equations is performed by computing field varia- 
tions which make the magnitude of S, and S, diminish, and the incremental changes 
in the velocity due to these field variations. The (I + 1) iterate is calculated from 
the I-th iterate by a solution of the Newton-Raphson equations, 

and 
0 = S,(‘z’BT ‘l’l?,) + (GS,/SB,) 6B, + (&/6B,) SB, , (25) 

0 = S,(‘z)BT ‘l)B,) + (SS,/SB,) BB, + (S&/SB,) 6B,, C-W 

where the superscript (I) denotes the iterate number. The (I)-th and (I + 1) iterate 
are related by the equation, 

'Z+l'B = (LIB + aBe 

The variations of S, and S, with B, and B, are given by the equations, 

6S,/6B, = (l/h) + (D - DUDR) + 2Va2 St/8z2, 

8S,.I8B, = -DUDZ, 

&/6B, = -DVDR, 

and finally, 

(27) 

(28) 

(29) 

6&/6B, = (l/h) + (D - DVDZ) + 2VAz 6t/8r2. (30) 
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These variations include the variation of the velocities with the magnetic field 
resulting in terms whose coefficient is the AlfvCn speed, 

v/i = ((B,2 + &“)/P)““. (31) 

The equations are derived for a general computation mesh, and can therefore be 
used for nonrectilinear Lagrangian meshes. 

For the MHD calculation the iteration variable in the mass equation is the 
augmented pressure given by, 

P = P + (1/2)@,2 + Bzy, (32) 

The augmented pressure is simply the sum of the traces of the fluid and Maxwell 
stress tensors. The addition of the field to the fluid pressure alters the equation of 
state by the addition of a term proportional to the square of the density, and this 
term is accounted for by substituting the magnetoacoustic speed for the adiabatic 
sound speed in the proportionality between pressure and density changes in the 
iteration. This proportionality is now given by, 

SP = (C,2 + V,2) sp, 

where the changes in density are given by solution of a Newton-Raphson equation 
derived from the mass equation [6]. Changes in the magnetic field and the augumen- 
ted pressure produce changes in the velocity field which must be calculated. For 
example, at vertex 1, the component difference equations are, 

su, = (&/2m3[r,(z, - 23 SP 

Sol = -@@dK1/W~2 + r&k2 - r3@P - & S&l 
+ (22 - zk)(& W + B, WNI. (34) 

The equations for the changes in the other vertices are obtained by cyclic per- 
mutation of the indices in the equations above. When changes in the iteration 
variables, SP, SB, and SB, in a cell become less than the tolerance level, the in- 
cremental momentum equation is bypassed. When changes become less than the 
tolerance level everywhere, the iteration ceases. The results are the density, pres- 
sure, magnetic field, and velocities at the advanced time. The Lagrangian step is 
completed by solving the internal energy equation. Before continuing, however, we 
will discuss the equations for the velocity derivatives in Eqs. 23 and 24. 

The minimum requirements on the accuracy of the difference formulas for the 
velocity derivatives is that they be consistent with the differential equations being 
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approximated. In addition, the solution of the magnetic field equations should 
conserve flux in the Lagrangian phase independently of the manner in which the 
computation mesh is rezoned. Difference formulas, for which the lowest order 
truncation errors are proportional to 6r and 6z, are given by equations of the same 
form as that for DUDR in cell a, 

DUDR = (I/‘%@47 - 4@8 - ~1) - (~8 - Mz, - zz.NlA . (35) 

This equation is derived by expanding the differences u7 - u2 and us - u1 in a 
Taylor series, and solving the equations for au/& and au/az [9]. The velocity 
divergence D is given by, 

D = (DUDR + DVDZ)(l -f (UOR) St) + UOR, (36) 

where UOR in cell a, for example, is given by, 

UOR = (u, + u8 + u2 + d/(r, + r8 + r2 + rd. (37) 

With these equations for the velocity derivatives, and a definition for the magnetic 
flux passing through an open surface bounded by a cell, as in cell a for example, 
given by, 

(38) 

the error in flux conservation in each cell, each cycle is proportional to Sr2 and Sz2. 
The results in Section III show that the errors in flux conservation are small. 

Finally, the internal energy equation is solved. The internal energy equation can 
be difTerenced so that total energy is conserved by balancing the change in the 
kinetic energy of the fluid against the work done by the internal degrees of freedom 
of the fluid. The change in the kinetic energy of a vertex can be equated to the work 
done by the resultant of the forces exerted on that vertex by the four neighboring 
cells. Conversely, the change in the internal energy of a cell can be equated to the 
work done by the forces it exerts on the four neighboring vertices. The work done 
is equal to the product of the force exerted and the displacement. If the displace- 
ment is calculated with the average of the old and time advanced velocities, the 
product of the resultant of the forces and the displacement is equal to the change in 
kinetic energy of the vertex. Thus, the sum of the changes in the internal energies 
of cells and kinetic energies of vertices over the entire mesh is zero and energy is 
conserved. 

The change in the sum of internal and magnetic field energies is obtained by 
summing the work done by a cell on its four neighboring vertices, and is given by, 

Li - i = Si, + Si, + Si, + Si, , (39 
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where 8il , the work done on vertex 1 is given by, . 

Si, = (1/2)[($ + ul){rl(zZ - z.J LP 
+ Wh + rJ((rz - r4) LB, L& - (zz - 4 & LBJl 
- CL01 + s){(VWz + rJ((r, - r4)tLP - Bz L&) 
+ (~2 - 4 LB, LB,))I at. (40) 

The other contributions to (“i - i) are given by cyclic permutation of the indices 
in the equation for 6i, . If the ratio, /3, of the fluid to the magnetic field pressure is 
less than E, the tolerance level in the iteration, errors in the calculation of the change 
in i are likely to be larger than the internal energy i. To prevent negative internal 
energies when /3 is less than E, we calculate a fluid pressure from the density, Lp, 
and internal energy, i, available to us. The change in i is then calculated directly 
from an appropriately modified Eq. (40). When /3 is greater than E, the internal 
energy, Li, is obtained by subtracting the magnetic field energy from Li. Thus, 
whatever the value of /3, the error in the total energy is never greater than O(E). 

B. The Rezone Phase 

The rezone phase of the composite algorithm consists of two parts: the calcula- 
tion of the grid motion, and the fluxing of thermodynamic variables from cell to cell 
due to the relative motion of the grid and fluid. The method and motivation for the 
calculation of grid motion for the almost Lagrangian calculation will be discussed 
first. 

The grid motion is arbitrary. If the grid velocity is zero, the calculation is 
Eulerian, and if it is equal to the fluid velocity, the calculation is Lagrangian. 
Neither an Eulerian calculation nor a Lagrangian calculation is completely satis- 
factory. Difference approximations in the convection terms for an Eulerian 
calculation introduce computational diffusion, and distortion of the Lagrangian 
grid in shear flows introduces inaccuracy, and sometimes even numerical instabili- 
ties. The grid velocity can also be prescribed so that the mesh moves in a way 
intermediate between an Eulerian and Lagrangian mesh. The intermediate mesh, 
which we call an almost Lagrangian mesh, is free from Lagrangian instabilities 
and decreases computational diffusion by reducing the relative motion of the mesh 
and the fluid. The grid velocity for the almost Lagrangian mesh will be equal to the 
Auid velocity plus an additional, and presumably small, velocity which reduces the 
displacement of the computation mesh from an associated ideal mesh. The pre- 
scription for the ideal mesh will take into account the desire to reduce the average 
relative motion of the grid and fluid, as well as the desire for local rectilinearity. 
For instance, if the fluid is translating in bulk, the ideal mesh ought to translate 
with the same velocity. The one necessary requirement the prescription must 
satisfy is that it must define a unique ideal mesh for a given computation mesh. 
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(For example, the prescription presented later in the discussion uniquely defines an 
ideal mesh by solving an associated boundary value problem for which the 
boundary conditions are given by the computation mesh.) There is probably no 
universal prescription for an ideal mesh equally applicable to all problems. Certain- 
ly, the aptness of the prescription to the application will contribute to the success 
of an almost Lagrangian calculation. 

The almost Lagrangian mesh will reduce computational diffusion more for 
transient flows than for steady flows. This is demonstrated by examining the 
properties of a model for computing the grid velocity. The grid velocity for an 
almost Lagrangian calculation is given by, 

U&7(& t) = Uf(C t) - w, d/T, (41) 

where u, is the grid velocity, uj the fluid velocity, S the displacement of the com- 
putation mesh from the ideal mesh, and 7 the relaxation time for the displacement 
to reduce to zero if the fluid velocity were zero. Consider now a case where the 
ideal mesh is stationary in a frame moving with the average fluid velocity. In the 
moving frame the displacement of the computation mesh from the ideal mesh is, 

S(r, t) = 1” u,(r, t’) dt’. (42) 
0 

Suppose the fluid velocity, uf , in the moving frame is equal to U(r) in the time 
interval t1 < t < tz , and zero otherwise. If initially S were zero, the grid velocity 
would be given by, 

u,(r, t> = b(r, 0) - U(r) exp(--(1 - W)[l - exp(-(h - W)l. 

For steady flow, that is for t1 = 0 and ts = t, the grid velocity is, 

(43) 

u,(r, t) = U(r) exp(-t/T). (44) 

After a time the grid velocity becomes very small and the almost-Lagrangian mesh 
behaves like an Eulerian mesh. The one difference is that the mesh is displaced 
from the ideal mesh, which coincides with an Eulerian mesh in this case, by an 
amount, 

6(r, t) = U(r) 7. 

The displacement of the almost Lagrangian mesh is bounded for steady flows, and 
this is good, but the almost Lagrangian mesh introduces as much computational 
diffusion as a comparable Eulerian calculation. 

On the other hand, for transient flow, the almost Lagrangian mesh reduces the 
relative velocity between the fluid and the grid. When the interval, (te - tl), over 
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which the fluid velocity is different from zero is shorter than T, the relative velocity, 
U rel = % - W 9 satisfies the inequality, 

Ihell <I -((tz--J~)U/ <IUl. (45) 

While the fluid velocity is nonzero, the mesh essentially follows the fluid. When 
the fluid velocity is once again zero, the mesh slowly relaxes back to the ideal mesh 
thus reducing the average relative velocity. All truncation errors in the convection 
terms with nonlinear dependence on the relative velocity will consequently be 
reduced. Therefore, the need to add explicit positive diffusion to stabilize the 
equations is also reduced. 

The almost Lagrangian calculations presented here use a prescription for an 
ideal mesh developed by Browne [lo]. This prescription gives a mesh with local 
rectilinearity, which allows adjacent zones to vary in size. Rectilinearity reduces 
truncation errors in the difference equations, and the freedom to use variable zone 
sizes allows regions where strong compressive gradients exist to be well resolved. 
(However, these properties also mean that the ideal mesh and the computation 
mesh will differ more in shearing flows than in compressional flows.) Thus, this 
ideal mesh will be especially useful for calculations of compressive flow where it 
will introduce a minimum of relative motion. 

To see how this prescription is obtained, consider the integral, 

I = I {(Vi)z + (Vj)z} dv, (46) 

where V is the gradient operator with respect to the Eulerian coordinates r and z, 
and i and j are mesh coordinates, i = i(r, z), j = j(r, z). When the boundary 
conditions specify j on boundaries where i is constant, and i on boundaries where 
j is constant, the problem of minimizing I is a Dirichlet problem. The solutions, i 
and j, to this problem are conjugate harmonic functions which satisfy the Cauchy 
conditions and thus have the property that lines of constant i and lines of constant 
j are perpendicular [I 11. These solutions satisfy the condition of local rectilinearity 
and therefore define a desirable ideal mesh. The connection with the computation 
mesh is established below. 

A difference approximation to Eq. (46) is obtained by using the relations between 
mesh coordinates and Eulerian coordinates given by Schulz [ 121. For example, the 
variation of i with r is replaced with the variation of z with j by means of the 
equation, 

ai/&- = (az/aj)/J, 

where J is the Jacobian of the transformation between mesh and Eulerian co- 
ordinates. When the equations are discretized, one finds the Jacobian is equal to the 
area of a computation cell. With the substitution of these relations into the integral, 
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and the replacement of the integral with a sum over discrete mesh coordinates, the 
difference analog, f, to lin Eq. (46) is obtained. Tt is given by 

i = c (L&r()” + (Lig-# + (LljZ,j)” + (d,zJ)” 
i,i -43:+1/J > (47) 

2+1/z 

where A$$ is a computation cell area, (rij, zii) are the Eulerian coordinates of 
points with mesh coordinates (i, j) and d,z,” is the forward difference, (z,“,, - zLk) 
of zlk with respect to the repeated index 1. When i is minimized with respect to one 
vertex at a time, the equations are linear and can be directly solved for each vertex 
displacement. The displacement of vertex 0 which minimizes i in the momentum 
control volume (shown in Fig. 2) surrounding vertex 0 is given by, 

and, 

%, = c Kzo - Wk + zi+,))IA4+3/~ (Wi+d, (49) 

where i = 1, 2, 3, 4 (cyclic), and I&+~ is given by, 

A&l = w2)K~, - ~o)(Zi+1 - &I) - (Zi - zl&i+1 - ~dl. (50) 

These displacements are the displacements from the ideal mesh, defined as the 
mesh for which i is a minimum, and are to be substituted into Eq. (41) to calculate 

FIG. 2. The dashed line surrounds the momentum control volume corresponding to vertex 0. 
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These values are substituted into Eq. (19) to evaluate RI’ with appropriate 
changes of indices. All other thermodynamic variables are rezoned as given by 
Hirt and Amsden [6, 71, including provisions for upstream differencing. 

There are two cases where the accuracy of flux conservation can be checked. 
When u, is equal to the fluid velocity, the rezone phase is inoperative and the flux 
conservation properties of the Lagrangian phase determine the flux conservation 
properties of the composite algorithm. When u, is zero, the composite algorithm is 
Eulerian and the difference equations for the field may be compared with those 
obtained by differencing Eq. (1) in conservation form. As has already been men- 
tioned, the Lagrangian phase conserves flux to O(8r2, 6z2) in each cell, each cycle. 
By comparison, a composite Eulerian scheme (u, = 0) conserves flux to O(&, 6~). 
The principal source of error is the interpolation to find the value of the field on a 
cell boundary. The interpolation could be improved, but the present version is 
economical and the results, as shown, are quite acceptable when the almost 
Lagrangian mode is used. 

C. Convergence of the Iteration 

The implicit dynamical equations are solved by the method of successive over- 
relaxation, for which an algorithm is given in Section A. Detailed discussion of the 
convergence properties of the algorithm are beyond the scope of this paper. 
However, the algorithm is at least as rapidly convergent as a Jacobi, or simul- 
taneous, iteration whose properties are well understood. To gain insight into the 
special advantages in calculational efficiency of an implicit formulation of the 
dynamical equations, the properties of a Jacobi iteration, specifically the rate at 
which numerical information is propagated over the mesh, will be assumed for the 
solution algorithm. 

The Jacobi iteration increases the domain of dependence of the numerical 
solution by one cell in each direction each iteration. The iteration can converge 
only if the numerical domain of dependence is larger than the physical domain of 
dependence. Thus the Courant number, the number of computation cells a physical 
signal can propagate in one time step, determines the number of iterations necessary 
to reach convergence to a specified precision. 

In a given problem with many modes of signal propagation there are important 
and unimportant signals. An unimportant signal is one that is indistinguishable 
from allowed error, when that error is small enough that decreasing it does not 
alter the qualitative results of a calculation. Thus, an effective Courant number can 
be defined as the number of computation cells important physical signals can 
propagate in a time step. The effective Courant number is often much less than the 
ordinary Courant number, which is defined with the maximum possible signal 
speed, especially in very low speed flows where only very weak acoustic or magneto- 
acoustic waves are generated. The equations are complete, however, and do allow 
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for acoustic waves if they should develop. Thus, for a given number of iterations, 
say that number which corresponds to an effective Courant number of one, the 
time step for an implicit calculation can be much larger than for a comparable 
explicit calculation for low speed flows. For high speed flows, those for which the 
Mach number is greater than 0.1 perhaps, the time step for explicit and implicit 
calculations will be comparable. 

RESULTS 

We illustrate the properties of the composite algorithm by presenting examples 
of its application to several sample problems. In the first example, the axisym- 
metric expansion of a hot, highly conducting spherical pellet in a magnetic field is 
calculated, and the effect of various zoning techniques on the computational diffu- 
sion of the magnetic field is demonstrated. The initial conditions for the pellet 
problem are given in Table I. The initial magnetic field is the result of the super- 

TABLE I 

Data for the Pellet Expansion Calculations 

Initial Conditions (in arbitrary units) 

Pellet Background Plasma 

Density, p 
Internal Energy, i 
Pellet Radius, a 

General Data 

10.0 0.01 
10.0 1.0 
1.0 

Ambient Field Intensity, B, - 1.0 (arbitrary units) 
Magnetic Reynolds Number, Rm - 200.0 
Resistive Diffusion Coefficient, r)/c( - 0.05 (arbitrary units). 
Convections Terms - upstream differencing 

position of a uniform axial field and the dipole field that makes the field inside th 
pellet exactly zero [13]. The field outside the pellet is given by, 

B = 1&[1 + aS((1/2) r2 - z2)/(r2 + z~)~/~] - ?&,[3/2rzaS/(r” + z~)~/~], (55) 

where P and L are radial and axial unit vectors, B, is the intensity of the uniform 
field, and a is the radius of the pellet. The pellet and initial field are shown in 
Fig. 3a, where contours of constant magnetic flux and fluid marker particles are 
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-iI 
0 b 

FIG. 3. The initial conditions for the pellet expansion calculation are shown. Figure 3a shows 
the magnetic field lines, and 3b the computation mesh. 

plotted. The left border is the axis of symmetry of the cylindrical coordinate 
system. On it is the small, dense circle of particles which mark the pellet. The 
rectangular array of widely separated particles serves as a raster. The square root 
of the flux is plotted, so that uniform field intensity results in equally spaced 
contours. The same contour values are shown in all figures. 

The initial computation mesh is shown in Fig. 3b. There are 15 zones radially 
and 30 axially. The smallest zones, at the center of expansion, have the dimensions 
&/a and &/a equal to 0.25, and increase both radially and axially in a geometric 
sequence with the common factor 1.2. 

Although the fluid pressure inside the pellet-field interface is isotropic, the 
magnetic field back pressure outside is not. It is zero in the axial direction at the 
poles, and nonzero in the radial direction at the equator. Thus, the expansion be- 
comes aspherical very rapidly. In fact, the pellet collapses radially and expands 
axially until it reaches its steady state, an infinitely long filament along the axis of 
symmetry. A computation will give the correct steady state only if the effective 
diffusion time in z pD2/vleff , where D is the diameter of the pellet and qeff is the 
effective resistivity, is long compared with the expansion time. An effective magnetic 
Reynolds number, which measures the relative importance of diffusion and convec- 
tion terms in Faraday’s law, is defined by, 
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where u is a characteristic fluid speed. This number measures the differences due 
to computational diffusion among the calculations with the various zoning options. 
Four such calculations are shown in Figs. 4 and 5 at a time of one arbitrary time 
unit. Figure 4a shows an Eulerian mesh. Figure 4b shows a Lagrangian mesh in 
which the mesh vertices move with the fluid velocity. Figure 4c shows an almost- 
Lagrangian calculation, called ALE1 . Figure 4d shows an almost Eulerian calcula- 
tion, called ALE2. The relaxation factor, y, which is equal to &/T, (cf. Eq. (41)) is 
set to 0.1 in ALE1 and 2. in ALE2. Increasing y makes the zones progressively 

a 

FIG. 4. The computation meshes for the 
shown. Figure 4a shows the Eulerian mesh, 
mesh, and Fig. 4d the ALE2 mesh. 

b 

pellet expansion calculation at one time unit are 
Fig. 4b the Lagrangian mesh, Fig. 4c the ALE1 
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I 

b 

1 
d 

FIG. 5. The magnetic field plots corresponding to the computation meshes in Fig. 4 are 
shown. 

more rectilinear. However, since any rectilinear mesh is a solution to Laplace’s 
equation, even when y equals 2.0 the relaxer allows cells to compress and dilate. 
Figure 5 shows the corresponding magnetic flux plots. The effects of computational 
diffusion are most clearly seen in the Eulerian calculation in which pellet marker 
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particles have crossed the innermost flux contour. A quantitative comparison of 
the calculations is given in Table II, where the effective Reynolds number is given. 

TABLE II 

Dependence of Computational Diffusion on the Zoning Mode 

Zoning 
mode 

Relaxation 
coefficient, y 

- 
Eulerian 
Lagrangian 
Almost-Lagrangian 

- 
- 
0.1 
1.0 
2.0 

Effective diffusion Magnetic reynolds 
coefficient, T&P number, uO+m 

1.2 8.0 
0.05 200.0 
0.05 200.0 
0.213 47.0 
0.225 44.0 

The effective diffussion coefficient is obtained by measuring the thickness of the 
current sheet separating the interior and exterior of the pellet at 0.8 time units. 
Computational diffusion introduced by the Eulerian calculation reduces & from 
the intended value 200 to 8, but the diffusion introduced by relaxing the mesh 
with y equal to 0.1 leaves the Reynolds number at its intended value. 

The effect of the computational ditfusion on the pellet’s approach to steady state 
is illustrated in Fig. 6, where the pellet’s expansion at 2.0 time units, as computed 

b 

FIG. 6. The magnetic field plots for the Eulerian and the ALE1 calculations are shown at 
two time units in Figs. 6a and 6b, respectively. 
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with an Eulerian mesh, is compared with its expansion, as computed with the 
ALE1 mesh. Because of the greater ability of an undifTused field to continue to 
drive the axial expansion of the pellet, the axial expansion is clearly greater in 
ALE1 than in the Eulerian calculation. 

Another significant difference among the calculations with the various zoning 
options is the size of the time step. Figure 7 shows the time step plotted against the 

Tame (arbitrary umts) 

FIG. 7. A comparison of the size of the time step for the various calculations of the pellet 
expansion is given by this plot of the time step against the time. 

time for all four calculations. (The difference in computing time per cycle among 
the calculations is less significant. Moving the mesh in an almost-Lagrangian 
calculation increases the computing time from 1 .O to 1.2 milliseconds per cell per 
cycle on the CDC 7600 from a comparable Eulerian calculation.) The time step is 
determined by the more restrictive of two fundamental stability conditions; the 
positive volume condition, 

nyjx{u St/Sx} < 1, (57) 

where max,,j means the maximum over the entire mesh, and the stability condition 
for the explicit viscous diffusion calculation, 

ngx”<(A + 2/J) at//3 6x2) < 1. (58) 
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(We have neglected the resistive diffusion because it is small.) In these calculations, 
the kinematic viscosity, (h + 2p’)/p, has been replaced by a variable viscosity. The 
viscosity is calculated to cancel destabilizing truncation errors in the momentum 
equation, which occur even when donor cell mass convection is used [3]. This 
variable viscosity is given by, 

(A + 2p’) = ((l/2) 242 St + 0.72&x) p. (59) 

It is possible to calculate the quantity z&/6x from the ratio of the time step deter- 
mined by the inequality (57) to that determined by inequality (58). The ratio lies 
between 1.15 and 1.20 for all four calculations indicating that St goes directly as 
ax/u. The ALE2 time step is largest simply because the zones are larger in regions 
of fluid flow in ALE2 than in any other calculation. ALE1 is seventy per cent as 
fast. That is, the cost of minimizing y to reduce computational diffusion is an 
increase in the computing time of thirty per cent. 

The second example is the calculation of the compression of a dynamic z-pinch 
[14, 151. Four features of the algorithm are illustrated by this calculation. First, the 
algorithm applies equally well to cylindrical coordinates and Cartesian coordinates. 
Second, the algorithm may be used with a nonrectilinear mesh. Such a mesh, for 
one quadrant of a pinch, has been generated by mapping a 10 x 10 rectangular 
mesh bounded by the lines x = -co, x = ln(lO), y = 0 and y = 77/2 onto a 
quandrant of a circle of by means of a transformation given by, 

and 
x’ = exp(x) cos y, 

y’ = exp(x) sin y. 

The mesh for this two-dimensional calculation is shown in Fig. 8a. The axis of the 
pinch is in the lower left corner. Third, the mesh relaxer may be applied to non- 
rectilinear meshes. This is shown by Fig. 8c, where the computation mesh at 0.1 
time units problem time is clearly of the same form as the initial mesh even though 
the outer zones have dilated and the inner zones have compressed. Since the 
mapping function is analytic, the transformed mesh is also a solution of Laplace’s 
equation. Thus, the action of the relaxer is to drive the mesh toward a mesh of 
similar form as the fluid causes dilation and compression of the computation zones. 
Fourth, the calculation is stable even when the Courant condition is violated. In 
the outer region of the mesh, farthest from the axis, the density is equal to 1 x 10-h. 
This gives a ratio of signal speed to maximum explicit mesh signal speed, V,St/Sx, 
approximately equal to ten, instead of a value less than one necessary to satisfy 
the Courant condition. The absence of numerical instabilities in this calculation is 
evidence that the implicit formulation has solved the Alfven problem. 
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C 

b 

d 

FIG. 8. The computation mesh and magnetic field plots are shown for zero and one tenth 
time units. The abscissa is the x-coordinate, the ordinate the y-coordinate. The length units are 
arbitrary. 

Figure 9 shows the radial variation of the plasma density and magnetic field 
intensity at various times. (The radial variation was observed to be independent 
of azimuth.) Figure 9a shows the initial conditions. The succeeding plots show the 
three phases of a z-pinch [ 151. In the first phase, the inward motion of the plasma- 
field interface drives a cylindrical shock toward the axis. The shock is shown in 
Fig. 9b, where the density and the field intensity are plotted at a problem time of 
0.05 units. In the second phase, the shock reflects off the axis, causing a very large, 
momentary compression at the axis. This is shown in Fig. 9c, where a density 
maximum of 34.4 at the axis can be seen. (Also shown are the curves from an 
Eulerian calculation. The maximum density at the axis is only a tenth as large. Not 
only is there less resolution at the axis in the Eulerian calculation, but there is also 
more diffusion of the field into the plasma, and both tend to reduce the maximum 
compression.) In the third phase the outward moving shock intercepts the still 
inward moving plasma interface and drives it outward and a rarefaction propagates 



NUMERICAL MAGNETOHYDRODYNAMICS 479 

Radial Dstancc hbitrary umtr) 

FIG. 9. The radial variations of the density and magnetic field are shown at 0.0, 0.05, 0.096, 
and 0.12 time units in Figs. 9a, 9b, 9c, and 9d, respectively. The solid curves correspond to the 
density, the dashed curves to the magnetic field intensity. 

back into the plasma. The density profile at the time of interception is shownlin 
Fig. 9d at a time of 0.12 units, but the outward moving shock cannot be seen. This 
is not an unexpected result, for the plasma never occupies more than eight radial 
zones, and the considerable momentum diffusion due to the action of the alternate 
node coupler discussed in Refs. [6 and 71 damps the outward moving shock. The 
result of the artificially high momentum diffusion is that the apparent equilibrium 
radius of the column, about 1.33 problem units, is larger than it should be as shown 
in Fig. 10. That is, the density is lower and the temperature is higher than would 
result from a less momentum diffusive calculation. For reference, the equilibrium 
radius would be 0.611 units if the compression were adiabatic. 
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Time (crbitrory units.1 

FIG. 10. The radius of the plasma column is plotted against the time for the z-pinch cal- 
culation. 

Figures 8b and 8d show the magnetic flux contours for problem times of 0.0 and 
0.1 time units. To the outermost contour in Fig. 8b is assigned the value 105.58, 
and to the outermost contour in Fig. 8d is assigned the value 105.30, giving direct 
evidence that the algorithm conserves magnetic flux very well. 

In these calculations, the time step is determined by the size of the smallest 
zones, which lie on the axis. When the converging shock reaches the axis, the axial 
zones become very small and make the time step small. The result is that this 
calculation with only 100 zones, required 1400 computation cycles at a cost of 
three minutes on the CDC 7600. In cases such as this, the calculation can be made 
more economical by setting a minimum zone size. 

CONCLUDING REMARKS 

We have reported the extension of the ICED-ALE technique to magneto- 
hydrodynamics, and the application of Browne’s mesh relaxing algorithm [lo] to 
allow the use of almost Lagrangian zoning. The sample calculations presented 
illustrate that the algorithm solves the AlfvCn problem and reduces computational 
diffusion. The algorithm can be applied to many other problems as well. For 
example, it is easy to add anisotropic heat and electrical conductivity because, 
with Lagrangian zoning, cell boundaries can be made to follow field lines, and a 
complex geometry problem is replaced by a trivial indexing problem. More 
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generally, Lagrangian zoning can also follow fluid-fluid interfaces as easily as 
fluid-field interfaces. 

There is one problem for which we can offer no completely satisfactory solution. 
As we have pointed out in the discussion of the z-pinch calculation, the algorithm 
is momentum diffusive. Part of the diffusion is due to the node coupler which 
suppresses the alternate node or coasting instability 161. The diffusion introduced 
by the node coupler is proportional to 69 and 8z2, and thus can be reduced by finer 
zoning. 

Finally, the first order time differencing used for the dynamical equations 
introduces diffusionlike truncation errors which can be quite large. However, the 
intent in this paper has been to address the problem of diffusion caused by fluxing 
material from cell to cell, and the calculational examples included were chosen to 
demonstrate reduction of diffusion for cases where fluxing errors are large. Other 
problems may be encountered where first order accuracy is not sufficient, and for 
these problems second order accurate differencing in time must be used. The 
scheme presented here is easily modified to give second order accuracy in the time 
step. 
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